Data-driven Approach to Reduce Apparent Losses
~ From America to Asia ~

Delph Mak
Regional Director, Xylem Vue Digital Solutions

delph.mak@xyleminc.com
@delphmak
Apparent Losses Challenges

PROBLEM

- Apparent losses impact water and financial sustainability
- Average of 2% of top-line revenue is lost annually via apparent loss issues

Hidden Revenue Locator – Customer Metering Inaccuracies
Thousands, tens-of-thousands, or even hundreds-of-thousands of meters in a water system.

How do I know which meters are underperforming and losing revenue?
Reinventing Meter Asset Management Strategy

Status Quo State

Typical Strategies:
- Meter replacement schedules based on meter age and/or throughput
- Bench testing a very small percentage of meters and drawing assumptions based on results
- Meter replacement at failure

Data-Driven Approach

- Meter replacements based on asset performance
- Replacement budgets guided by number of inaccurate meters in the system and expected payback scenarios
- Trackable and quantifiable impact on Apparent Loss reduction

Status quo: 6-10% of meters actually require replacement

Future State: a proven 4x improvement over current meter management practices
Solving Apparent Losses with Data-driven Approach

- Quantifies the apparent loss for prioritization, meter-by-meter
- Locates meter under registration, leaks, data errors and unauthorized consumption
- Locates issues on up to 5% of meters to recover 1.5% top line revenue, annually.
- Empowers proactive revenue recovery and operational efficiency

SOLUTION

Data Inputs

- Machine learning/AI
- Industry Intelligence

Dashboards

- Operational Interventions

- Revenue Recovery
- Operational Efficiency
- CAPEX Deferment
Case Study

Clayton County Water Authority (CWWA)
Case Study on Clayton County Water Authority (CWWA)

Background
- Provides water, sewer, and storm-water services
- 85,150 meters, mostly mechanical
- 2,449 are commercial meters
- AMR – monthly readings (installed 2006-2010)
- $110M in revenue, $24M capital/year

Challenges
- Reactive ‘top down’ water audits
- Large data volume challenges
- Need timely and trusted data insights
- No structured meter replacement program backed by data

Goals
1. Pro-actively manage ~2500 commercial meters.
2. Recover revenue from under-performing meters
3. Use innovative technologies to improve operational performance
Previous approach to **meter management** and **apparent losses** at CCWA:

- Random meter accuracy testing and replacement.
 - **Select 100 large meters** (1.5” and greater) randomly and test them
 - Only ~5 meters/year would fail test and be replaced
 - Water audit results based on small random sample – many decisions made based on this data.

Takeaway: Standard methods incur the cost of 100 truck rolls and tests but provide minimal benefits.
How can CCWA *proactively* manage apparent loss to yield benefits such as:

- Improving revenue assurance
- Apparent loss reduction
- Improved capital planning
- Better operational efficiency

A program was established using Hidden Revenue Locator:

- Phase 1 (2016) – All meters in the system
- Phase 2 (2017) – 1.5 and 2-inch meters
- Phase 3 (2018-current) – All large meters (1.5 inch and above)
Indicators of Water Meter Anomalies

1. **Water Meter Under-Registration:** Detects meters registering less water than actual flow through the meter.

2. **Water Meter Read Errors:**
 Detects:
 - Negative reads
 - Anomalous consecutive zeros
 - Implausible reads

3. **Meter Right-Sizing:**
 Detects when a meter is too large or small for its water demand.
Goal:
To detect meters registering less water than actual flow through the meter.

Why?
About 5% of mechanical meters under-report consumption – but it is hard to identify which ones are degrading.

Age alone does not predict when meters will degrade.

How is this better than traditional meter replacement practices? (E.g., age-based sampling)

- Analyzes each meter and service area to understand customer behavior (e.g. weather, conservation).
- Filters out expected short-term changes in water consumption (e.g. changes in occupancy).
- Analyzes multiple under-registration factors (age, throughput, and others).

3-6x as effective at identifying degrading meters as standard utility practice.
Meter Under-Registration Algorithm

![Graph showing Meter Read Volume, Scaled Volume, Predicted, Flag Start Date, and Revenue Discrepancy with dates from 06/01/2014 to 06/11/2017.]
2. Water Meter Read Errors

Goal:
To detect anomalous meter reads (negatives, high reads, unexpected zeros) which indicate a meter issue.

Why?
High accuracy method for detecting mechanical or communications issues, incorrect account data, or meter network failures.

How is this better than traditional identification practices? (E.g., exception reports, meter/AMI alarms)

- **Looks for severe, ongoing, repeated issues** — not small/non-issues
- **Filters out expected short-term changes in water consumption** (e.g. changes in occupancy)
- **Factors in past behavior to filter out seasonal trends** (i.e. vacation homes)
- **Creates prioritized list of most urgent and actionable issues** to save you time & money
3. **Water Meter Right-Sizing**

Goal:
To detect incorrectly sized meters.

Why?
Meters that are too large may not register low flows, losing revenue. Meters that are too small will degrade rapidly and start to under-register or fail completely.

How is this better than traditional identification practices? (E.g., relying on customer requests to downsize)

- More granular insight available with AMI data
- Creates list of meters to monitor with data loggers
- Extrapolates hourly usage profiles from historical consumption at meter
- Compares to AWWA specifications for max/min recommended for meter type and size
Dashboard: Issue Overview

Meters for Investigation

Filter by: Ongoing, To Review, Selected For Investigation, Investigated

Key Metrics
- **Revenue Loss To Date:** $1,605,071
- **Volume Loss To Date:** 279,761,716 GAL
- **Ongoing Issues:** 227

Issues

Showing 1 to 10 of 227 results

<table>
<thead>
<tr>
<th>Issue Start Date</th>
<th>Volume Lost To Date (GAL)</th>
<th>Monthly Revenue Risk (USD)</th>
<th>Meter Id</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/12/2015</td>
<td>215,793,664</td>
<td>$26,130 *</td>
<td>0070944814</td>
<td>5546 Michelle Terrace, South Conception</td>
</tr>
<tr>
<td>01/25/2012</td>
<td>12,596,811</td>
<td>$2,015 *</td>
<td>001596970B</td>
<td>343 Kozey Plaza, Ogaport</td>
</tr>
<tr>
<td>02/15/2012</td>
<td>11,393,219</td>
<td>$1,687</td>
<td>0001596970</td>
<td>3700 Schmeler Pike, West Shannon</td>
</tr>
<tr>
<td>04/12/2015</td>
<td>6,440,072</td>
<td>$774 *</td>
<td>006384974A</td>
<td>8349 Gidason Square, South Conception</td>
</tr>
<tr>
<td>03/23/2018</td>
<td>2,385,087</td>
<td>$1,198 *</td>
<td>0072796360</td>
<td>4606 Morton Viaduct, West Shannon</td>
</tr>
<tr>
<td>06/15/2015</td>
<td>1,790,834</td>
<td>$319 *</td>
<td>006566998C</td>
<td>4182 Harvey Ferry, Ogaport</td>
</tr>
<tr>
<td>01/25/2012</td>
<td>1,707,895</td>
<td>$181 *</td>
<td>0030478455</td>
<td>5985 Lawrence Junction, Ogaport</td>
</tr>
</tbody>
</table>

Filters

- **Issue Type**
- **Location Group**
- **Customer Type**
- **Meter Size**

Investigation Status

- To Review
- Selected For Investigation
- Investigated
- Correct
- Unverifiable
- Postponed
- Ignored

[Apply Filters]
Dashboard: Information for Action

Meter Under-Registration

February 08, 2012 - Present

Issue Details
- Meter ID: 001596972C
- Premise ID: 46364
- Location: 5346 D’Amore Bridge, West Shannon

Other Issue Details

Impact Details

<table>
<thead>
<tr>
<th>Revenue Loss</th>
<th>Volume Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total To Date</td>
<td>Total To Date</td>
</tr>
<tr>
<td>$308,766</td>
<td>55,158,348 GAL</td>
</tr>
<tr>
<td>Risk Per Month</td>
<td>Risk Per Month</td>
</tr>
<tr>
<td>$4,668</td>
<td>821,838 GAL</td>
</tr>
</tbody>
</table>

Usage

Volume in GAL

Monthly

Xylem
Let’s Solve Water
Investigation Results

This feedback helps you track the ROI of your program.

Select Meter Type *
Select Test Date *

- Ran the Low Flow test before any High Flow test

Flow Rates

<table>
<thead>
<tr>
<th>Type</th>
<th>GPM</th>
<th>Accuracy</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investigation

We highly recommend you investigate this issue:

- Follow our Investigation Best Management Practices and AWWA Requirements.
- Roll a truck and perform a visual inspection.
- Test meter accuracy in place with a known meter.
- Click below to enter investigation and flow test results.

Add to Investigation List
Enter Results
Add Note
Postpone
Ignore

Investigation

- * Investigated

Flow Test Results: Accuracy at Tested Rates

- **Reported:** August 28, 2019, 5:11 PM
- **Low:** 0.25 GPM 95.00%
- **Medium:** 2.00 GPM 99.00%
- **High:** 10.00 GPM 99.90%

Add Note
CCWA – Insights from Large Consumption Meters Analysis

1. High Revenue Impact from Commercial Meters

- 67% of revenue gains are from **16 large meters** equating to **$195,553** in incremental revenue gains over next 24-mo
- 33% of revenue gains are from **61 small meters** equating to **$91,883** in incremental revenue gains over next 24-mo

- Continue taking proactive action on commercial meters due to high revenue impact
- CCWA is in their 4th year of using Valor’s Hidden Revenue Locator product.
2.

Revenue Discrepancy of 30 flagged meters: **USD $622,759**

Incremental revenue value of 30 flagged meters: **USD $270,360**

<table>
<thead>
<tr>
<th>Meter Population Analysed</th>
<th>Meters Flagged</th>
<th>Meters Validated</th>
<th>Correct Predictions</th>
<th>Replacement Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,439 large meters</td>
<td>94 meter flags</td>
<td>74 meters tested</td>
<td>30</td>
<td>42% (compared to 6% status quo)</td>
</tr>
</tbody>
</table>

- Revenue discrepancy from start of issue identification to current date: **USD $622,759**
- 24-Month incremental revenue gain: **USD $270,360**
Bringing Digital to Asia
Applying Digital Solution in Asia Context

Challenge 1
Low Water tariffs
In Asia, water tariffs are lower due to high government subsidies. This results in lower value in revenue recovery.

Challenge 2
Bulk Replacement of Meter Fleet
Meters with high degradation rate and less advanced meter replacement strategy results in high CAPEX on large fleet replacement

Challenge 3
Less Guidance from Regulators
Regulators are less mature in providing guidance on good standard practices to manage meters

Opportunity 1
Focus on Large Consumption Users
Greater interest to focus on commercial and industrial accounts which consume larger amounts of water and meters degrade faster

Opportunity 2
Better CAPEX Planning
Replace meters only when they are identified as degraded. Better CAPEX planning and a more transparent replacement methodology

Opportunity 3
Guidance by Data-driven Insights
Utilities can develop good strategy by themselves with support from decision intelligence solution
Opportunity 1: Focus on Large Consumption Users

Illustrative Example

Total Meter Fleet Size: 800,000 accounts
Total Annual Revenue: USD $300 million
Commercial Meter Fleet Size: 40,000 accounts (5% of total)
Commercial Meter Revenue: USD $ 120 million (40% of total revenue)
 • Higher tariff for commercial use
 • Higher consumption

Value Calculation
Assumption: Recover 1.5% with HRL
Total commercial revenue recovered: USD $ 1.8 million
Total domestic revenue recovered: USD $ 2.7 million
Commercial revenue recovered per meter: USD $ 45 per meter
Domestic revenue recovered per meter: USD $ 3.55 per meter
Opportunity 2: Better CAPEX Planning

Illustrative Example

Total Meter Fleet Size: 1,000,000 accounts
Current Meter Replacement Strategy: >8 years
Average No of Meters Replaced Annually: 125,000 (12.5% of total)
CAPEX: USD $3.1 million (Assume USD $25 per meter)

Value Calculation

Analysis of 20,000 Meters → 2,500 meters > 8 years
Total number of anomalous meters > 8 years: 410 (16%)

New Replacement Strategy: Data-driven results
Number of Meters Replaced Annually (full fleet): 100,000 (10% of total)
Capital Deferment: At a replacement cost of USD $25 per meter this would save the utility USD $625,000 per year.
Value Summary of a Data-driven Meter Management Approach

Revenue Recovery
Identify and recapture up to 1.5% of annual top-line revenue being unbilled

Operational Efficiency
Locate specific revenue and volume loss issues with individual meters, creating a prioritized, data-driven meter asset program

CAPEX Planning
Avoid unnecessary repair and replacement of functioning meters. Re-design an optimal meter replacement strategy